VLLM
使用 VLLM Benchmark 进行模型性能测试
· ☕ 3 分钟
VLLM Benchmark 是 VLLM 提供的一个用于测试模型性能的工具,支持多种推理后端。本文主要记录一些使用 VLLM Benchmark 进行模型性能测试的过程。 1. 启动模型服务 1 2 3 4 5 6 7 8 9 10 11 12 13 14 python -m vllm.entrypoints.openai.api_server \ --model /models/Qwen2.5-7B-Instruct \ --served-model-name /models/Qwen2.5-7B-Instruct \ --host 0.0.0.0 \ --port 8000 \ --trust-remote-code \ --dtype bfloat16 \ --gpu-memory-utilization 0.90 \ --max-model-len 4096 \ --max-seq-len-to-capture 8192 \ --max-num-seqs 128 \ --disable-log-stats \ --tensor-parallel-size 1 \ --no-enable-prefix-caching 2. 启动客户端

使用 vLLM 进行模型推理
· ☕ 5 分钟
1. 环境准备 下载 Miniforge 1 wget "https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-$(uname)-$(uname -m).sh" 安装 Miniforge 1 bash Miniforge3-$(uname)-$(uname -m).sh 1 2 echo "export PATH=$HOME/miniforge3/bin:$PATH" >> ~/.bashrc source ~/.bashrc 创建环境 1 conda create -n vllm python=3.12 目前 vllm 要求 Python 3.9+ 激活环境 1 conda activate vllm 安装依赖 1 conda install vllm 2. 推理测试 2.1 模型准备 设置模型地址 海外 1 export MODEL_REPO=https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat 国内 1 export MODEL_REPO=https://hf-mirror.com/Qwen/Qwen1.5-1.8B-Chat 下载模型 1 nerdctl run --rm -v ./:/runtime shaowenchen/git lfs clone $MODEL_REPO 2.2 Offline Batched Inference 这种推理方式适用于离线场景,比

使用 vLLM 应用验证推理节点
· ☕ 1 分钟
1. 制作镜像 为了方便测试,这里将模型文件打包到镜像中。 下载模型 1 2 3 4 git clone https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat cd Qwen1.5-1.8B-Chat && git lfs pull rm -rf .git cd .. 编写 Dockerfile 1 2 3 4 5 cat <<EOF > Dockerfile FROM vllm/vllm-openai:latest RUN mkdir -p /models/Qwen1.5-1.8B-Chat COPY Qwen1.5-1.8B-Chat/* /models/Qwen1.5-1.8B-Chat EOF 编译镜像 1 nerdctl build --platform=amd64 -t registry-1.docker.io/shaowenchen/demo:vllm-qwen-1.5-1.8b-chat-amd64 . 推送镜像 1 nerdctl push --platform=amd64 registry-1.docker.io/shaowenchen/demo:vllm-qwen-1.5-1.8b-chat-amd64 2. 主机上推理服务 设置环境变量 国内 1 export IMAGE=shaowenchen/demo:vllm-qwen-1.5-1.8b-chat-amd64 国外 1 export IMAGE=registry-1.docker.io/shaowenchen/demo:vllm-qwen-1.5-1.8b-chat-amd64 指定设备,运