整理
NVIDIA GPU 核心与架构演进史
· ☕ 8 分钟
1. 产品线 GeForce 面向游戏玩家,提供强大的图形处理能力、先进的游戏技术。 常见的有 NVIDIA GTX 系列、高端的 RTX 系列、Titan 系列。 Quadro 面向专业市场,如设计师、工程师、科学家和内容创作者。 常见的有 Quadro P 系列,高端的 Quadro RTX 系列 Tesla 面向数据中心和高性能计算(HPC)市场,

分布式训练中的数据并行架构
· ☕ 5 分钟
1. Parameter Server 架构 在 Parameter Server 架构中,集群中的节点被分为两类,参数服务器节点(Parameter Server)和工作服务器节点(Worker)。 1.1 Parameter Server Parameter Server 用于存放模型的参数。 每个参数服务器节点负责管理和更新模型的一部分参数,而每个工作节点则只处理与其对应

什么是 MLOps
· ☕ 4 分钟
1. 什么是 MLOps MLOps 是 Machine Learning Operations 的缩写,描述的是围绕模型研发整个生命周期过程的标准化和工程化。 MLOps 包括以下几个关键步骤: 数据管理,数据的存储、访问、清洗、转换 模型开发,算法开发、模型构建 模型训练与调优,使用数据训练模型,调整超参数优化模型,微调模型 模型评

常用 GPU 运维及故障处理
· ☕ 10 分钟
处理故障时,参考或者记录下的内容,持续更新中 1. XID 错误事件 XID 是 NVIDIA 的错误码,可以通过命令: 1 dmesg -T | grep -i "NVRM: Xid" 或者 1 journalctl --since `date -d "10 days ago" "+%Y-%m-%d"`|grep Xid 根据 XID 可以定位故障,下面是一些常见的 XID 事件 XID 说明 13 Graphics Engine Exception。通常是数组越界、指令错误,小概率是硬件问

transformers 库的使用
· ☕ 4 分钟
transformers 是由 Hugging Face 开发的 Python 库,用于在自然语言处理(NLP)任务中使用和训练预训练的 Transformer 模型。它提供了许多强大的工具和功能,使得处理文本数据和构建 NLP 模型变得更加容易。该库广泛应用于各种 NLP 任务,如文本分类、命名实体识别、问答、文本生成等。 1. transformers 中的 pipeline pipeline 提供