博文
大模型部署工具 llama.cpp
· ☕ 7 分钟
1. 大模型部署工具 llama.cpp 大模型的研究分为训练和推理两个部分。训练的过程,实际上就是在寻找模型参数,使得模型的损失函数最小化,推理结果最优化的过程。训练完成之后,模型的参数就固定了,这时候就可以使用模型进行推理,对外提供服务。 llama.cpp 主要解决的是推理过程

有一定免费 GPT-4-32K 额度,需要的粉丝速速体验
· ☕ 1 分钟
1. 申请到 GPT-4-32K API 了 之前在 Azure 上提交申请使用 GPT-4,前几天收到审核通过的邮件了。 价格收费如下: Context Length Prompt per 1,000 tokens (8k) Completion per 1,000 tokens (32k) 8k $0.03 $0.06 32k $0.06 $0.12 请求限速为 60K TPM,即每分钟最多能处理 60K 个 Tokens。 2. 使用方式 无需登录,直接访问 https://chatgpt.chenshaowen.com/ 点击设置 输入访问密码 Access Code 密码

使用 OpenAI 和 Langchain 通过对话直接调用函数
· ☕ 5 分钟
1. 大模型与 Langchain 很多人可能没有机会训练、甚至微调大模型,但对大模型的使用却是未来趋势。那么,我们应该如何拥抱这一变化呢?答案就是 Langchain。 大模型提供的是一种泛而通用的基础能力,目前,我看到的有两种主要落地方式: 基于生成能力的 AIGC,

使用 Upptime 无成本监控服务可用性
· ☕ 4 分钟
1. 什么需要拨测服务 今年 GPT 大火,我也部署、开发了几个应用、小程序进行学习。当然,秉承帮助厂商测试功能的原则,目前只有 GPT 3.5 的 API 每天有少许费用,服务器、数据库、带宽都是免费的。 为了节省成本,我没有测试环境,每次提交代码,只要能编译成功就会直接发布

使用 Apline 镜像常见问题
· ☕ 1 分钟
1. DNS 请求超时 原因: alpine 使用的是 musl 库,在 DNS 解析上会有一些限制[1] 解决方式: 不使用 apline 镜像,并在容器 resolv.conf 文件中增加 options single-request-reopen 配置。因为 single-request-reopen 配置项只对 glibc 库生效,但是 apline 镜像使用的是 musl 库 2. Docker 下无法解析 hosts 原因: alpine 没有 /etc/nsswitch.conf,导致依赖 hosts