使用 lmcache 能显著改善模型推理的 TTFT
· ☕ 4 分钟
1. LMCache 简介 TTFT 是指从请求发出到模型生成第一个 token 的时间。由于 Prefill 阶段需要把输入的上下文编码成 KV Cache,才能开始生成,在生成第一个 token 时需要大量的计算从而导致 TTFT 很高。 为了降低 TTFT,有一个思路就是将 Prefill 阶段计算出来的 KV Cache 缓存起来,下次遇到相同的上下

什么是 Prefix Cache
· ☕ 2 分钟
1. 什么是 Prefix Cache 在模型推理场景下,经常会使用缓存机制来提升吞吐和性能。常见的有两种缓存机制: Key-Value Cache (KV Cache),面向的是单次请求的内部,将 Transformer 模型中间计算结果(Key 和 Value)缓存起来,避免重复计算 Prefix Cache,面向的是多次请求时,利用 Prompt 的公

NVIDIA RTX 5090 推理测试
· ☕ 3 分钟
1. 安装驱动 下载驱动 访问 https://www.nvidia.com/en-us/drivers/ 选择对应的驱动版本下载 1 wget https://us.download.nvidia.com/XFree86/Linux-x86_64/580.76.05/NVIDIA-Linux-x86_64-580.76.05.run 安装驱动 1 bash NVIDIA-Linux-x86_64-580.76.05.run 查看显卡 1 nvidia-smi 1 2 3 GPU 0: NVIDIA GeForce RTX 5090 (UUID: GPU-92fcdc58-4754-73c7-af6c-56740936817d) GPU 1: NVIDIA GeForce RTX 5090 (UUID: GPU-e05cb455-7dd3-0db5-ac39-70794aa19d4e) ... 开启持久模式 1 nvidia-smi -pm 1 查看拓扑结构 1 nvidia-smi topo -m 1 2 3 4 5 6 7 8 9 10 nvidia-smi topo -m GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 CPU Affinity NUMA Affinity GPU NUMA ID GPU0 X PIX NODE NODE SYS SYS SYS SYS 0-47,96-143 0 N/A GPU1

什么是模型量化
· ☕ 4 分钟
1. 什么是模型量化 模型量化是将高精度的模型(通常为 32 位浮点数 FP32 或 16 位浮点数 FP16 )的权重和激活值转换为低精度模型(如 8 位整数 INT8)的过程。 FP32 的值范围为 -3.4*10^38 到 3.4*10^38,有 40 亿个值。而对于 INT8,我们只能看到可能值集内的 256 个值,值范围为

Kubernetes 基础环境要求
· ☕ 2 分钟
1. 基础包 Kubernetes 版本 ≥ 1.18 socat 必须安装 conntrack 必须安装 ebtables 可选,但推荐安装 ipset 可选,但推荐安装 ipvsadm 可选,但推荐安装 1 apt-get -y install socat conntrack ebtables ipset ipvsadm 2. 端口要求 2.1 基础节点服务 Service Protocol Action Start Port End Port Comment ssh TCP allow 22 22 节点远程管理 docker TCP allow 2375 2376 Docker 远程通信 etcd TCP allow 2379 2380 etcd 集群通信 2.2 Master/Control Plane 组件 Service Protocol Action Start Port End Port Comment apiserver